Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biotechnol ; 387: 12-22, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38522773

RESUMO

5-hydroxyvaleric acid (5-HV) is a versatile C5 intermediate of bio-based high-value chemical synthesis pathways. However, 5-HV production faces a few shortcomings involving the supply of cofactors, especially α-ketoglutaric acid (α-KG). Herein, we established a two-cell biotransformation system by introducing L-glutamate oxidase (GOX) to regenerate α-KG. Additionally, the catalase KatE was adapted to inhibit α-KG degradation by the H2O2 produced during GOX reaction. We searched for the best combination of genes and vectors and optimized the biotransformation conditions to maximize GOX effectiveness. Under the optimized conditions, 5-HV pathway with GOX showed 1.60-fold higher productivity than that of without GOX, showing 11.3 g/L titer. Further, the two-cell system with GOX and KatE was expanded to produce poly(5-hydroxyvaleric acid) (P(5HV)), and it reached at 412 mg/L of P(5HV) production and 20.5% PHA contents when using the biotransformation supernatant. Thus, the two-cell biotransformation system with GOX can potentially give the practical and economic alternative of 5-HV production using bio-based methods. We also propose direct utilization of 5-HV from bioconversion for P(5HV) production.

2.
Heliyon ; 10(6): e27896, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38524613

RESUMO

Mannan and outer structural yeast cell wall polysaccharides have recently garnered attention for their health defense and cosmetic applications. In addition, many studies have confirmed that yeast cell wall mannans exhibit various biological activities, such as antioxidant, immune regulation, reducing hyperlipidemia, and gut health promotion. This paper elucidates yeast cell wall mannan structural features, biological activities, underlying molecular mechanisms, and biosynthesis. Moreover, mannan-overproducing strategies through yeast strain engineering are emphasized and discussed. This review will provide a scientific basis for yeast cell wall mannan research and industrial applications.

3.
J Microbiol Biotechnol ; 34(1): 1-10, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37919866

RESUMO

Polyhydroxybutyrate (PHB) production from lignocellulosic biomass is economically beneficial. Because lignocellulosic biomass is a mixture rich in glucose and xylose, Escherichia coli, which prefers glucose, needs to overcome glucose repression for efficient biosugar use. To avoid glucose repression, here, we overexpressed a xylose regulator (xylR) in an E. coli strain expressing bktB, phaB, and phaC from Cupriavidus necator and evaluated the effect of xylR on PHB production. XylR overexpression increased xylose consumption from 0% to 46.53% and produced 4.45-fold more PHB than the control strain without xylR in a 1% sugar mixture of glucose and xylose (1:1). When the xylR over-expressed strain was applied to sugars from lignocellulosic biomass, cell growth and PHB production of the strain showed a 4.7-fold increase from the control strain, yielding 2.58 ± 0.02 g/l PHB and 4.43 ± 0.28 g/l dry cell weight in a 1% hydrolysate mixture. XylR overexpression increased the expression of xylose operon genes by up to 1.7-fold. Moreover, the effect of xylR was substantially different in various E. coli strains. Overall, the results showed the effect of xylR overexpression on PHB production in a non-native PHB producer and the possible application of xylR for xylose utilization in E. coli.

4.
Microorganisms ; 10(11)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36363810

RESUMO

Probiotic Lactobacillus species are known to exert health benefits in hosts when administered in adequate quantities. A systematic safety assessment of the strains must be performed before the Lactobacillus strains can be designated as probiotics for human consumption. In this study, we selected Lactobacillus fermentum IDCC 3901, L. gasseri IDCC 3101, L. helveticus IDCC 3801, and L. salivarius IDCC 3551 as representative Lactobacilli probiotic strains and investigated their probiotic properties and potential risks through phenotypic and genomic characterization. Various assays including antimicrobial resistance, biogenic amine production, L-/D-lactate production, acute oral toxicity, and antipathogenic effect were performed to evaluate the safety of the four Lactobacillus strains. Genomic analysis using whole genome sequencing was performed to investigate virulence and antibiotic resistance genes in the genomes of the selected probiotic strains. The phenotypes of the strains such as enzymatic activity and carbohydrate utilization were also investigated. As a result, antibiotic resistances of the four Lactobacillus species were detected; however, neither antibiotic resistance-related genes nor virulence genes were found by genomic analysis. Moreover, the four Lactobacillus species did not exhibit hemolytic activity or ß-glucuronidase activity. The biogenic amine production and oral acute toxicity were not shown in the four Lactobacillus species, whereas they produced D-lactate with minor ratio. The four Lactobacillus species exhibited antipathogenic effect to five pathogenic microorganisms. This study provides a way to assess the potential risks of four different Lactobacillus species and validates the safety of all four strains as probiotics for human consumption.

5.
Microorganisms ; 10(3)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35336129

RESUMO

Vitamin K is a fat-soluble vitamin that mainly exists as phylloquinone or menaquinone in nature. Vitamin K plays an important role in blood clotting and bone health in humans. For use as a nutraceutical, vitamin K is produced by natural extraction, chemical synthesis, and microbial fermentation. Natural extraction and chemical synthesis methods for vitamin K production have limitations, such as low yield of products and environmental concerns. Microbial fermentation is a more sustainable process for industrial production of natural vitamin K than two other methods. Recent advanced genetic technology facilitates industrial production of vitamin K by increasing the yield and productivity of microbial host strains. This review covers (i) general information about vitamin K and microbial host, (ii) current titers of vitamin K produced by wild-type microorganisms, and (iii) vitamin K production by engineered microorganisms, including the details of strain engineering strategies. Finally, current limitations and future directions for microbial production of vitamin K are also discussed.

6.
Annu Rev Food Sci Technol ; 13: 463-488, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-34990222

RESUMO

A growing human population is a significant issue in food security owing to the limited land and resources available for agricultural food production. To solve these problems, sustainable food manufacturing processes and the development of alternative foods and ingredients are needed. Metabolic engineering and synthetic biology can help solve the food security issue and satisfy the demand for alternative food production. Bioproduction of food ingredients by microbial fermentation is a promising method to replace current manufacturing processes, such as extraction from natural materials and chemical synthesis, with more ecofriendly and sustainable operations. This review highlights successful examples of bioproduction for food additives by engineered microorganisms, with an emphasis on colorants and flavors that are extensively used in the food industry. Recent strain engineering developments and fermentation strategies for producing selected food colorants and flavors are introduced with discussions on the current status and future perspectives.


Assuntos
Ingredientes de Alimentos , Cor , Fermentação , Alimentos , Indústria Alimentícia , Humanos
7.
Foods ; 12(1)2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36613317

RESUMO

Ethyl carbamate (EC) is a naturally occurring substance in alcoholic beverages from the reaction of ethanol with urea during fermentation and storage. EC can cause dizziness and vomiting when consumed in small quantities and develop kidney cancer when consumed in excess. Thus, the reduction of EC formation in alcoholic beverages is important for food safety and human health. One of the strategies for reducing EC contents in alcoholic beverages is developing a new yeast starter strain to enable less formation of EC during fermentation. In this study, we isolated a polyploid wild-type yeast Saccharomyces cerevisiae strain from the Nuruk (Korean traditional grain-based inoculum of wild yeast and mold) and developed a starter culture by genome engineering to reduce EC contents in alcoholic beverages. We deleted multiple copies of the target genes involved in the EC formation in the S. cerevisiae by a CRISPR/Cas9-based genome editing tool. First, the CAR1 gene encoding for the arginase enzyme responsible for the formation of urea was completely deleted in the genome of S. cerevisiae. Additionally, the GZF3 gene encoding the transcription factor controlling expression levels of several genes (DUR1, 2, and DUR3) related to urea absorption and degradation was deleted in S. cerevisiae to further reduce the EC formation. The effects of gene deletion were validated by RT-qPCR to confirm changes in transcriptional levels of the EC-related genes. The resulting strain of S. cerevisiae carrying a double deletion of CAR1 and GZF3 genes successfully reduced the EC contents in the fermentation medium without significant changes in alcohol contents and fermentation profiles when compared to the wild-type strain. Finally, we brewed the Korean traditional rice wine Makgeolli using the double deletion strain of S. cerevisiae dCAR1&GZF3, resulting in a significant reduction of the EC content in Makgeolli up to 41.6% when compared to the wild-type strain. This study successfully demonstrated the development of a starter culture to reduce the EC formation in an alcoholic beverage by CRISPR/Cas9 genome editing of the wild yeast.

8.
Bioresour Technol ; 346: 126349, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34800639

RESUMO

As numerous industrial bioprocesses rely on yeast fermentation, developing CO2-fixing yeast strains can be an attractive option toward sustainable industrial processes and carbon neutrality. Recent studies have shown that the expression of ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO) in yeasts, such as Saccharomyces cerevisiae and Kluyveromyces marxianus, enables mixotrophic CO2 fixation and production of biofuels. Also, the expression of a synthetic Calvin-Benson-Bassham (CBB) cycle including RuBisCO in Pichia pastoris enables autotrophic growth on CO2. This review highlights recent advances in metabolic engineering strategies to enable CO2 fixation in yeasts. Also, we discuss the potentials of other natural and synthetic metabolic pathways independent of RuBisCO for developing CO2-fixing yeast strains capable of producing value-added biochemicals.


Assuntos
Dióxido de Carbono , Engenharia Metabólica , Ciclo do Carbono , Fotossíntese , Ribulose-Bifosfato Carboxilase/metabolismo , Saccharomyces cerevisiae/metabolismo
9.
Chem Biodivers ; 19(1): e202100600, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34725898

RESUMO

Protein tyrosine phosphatases (PTPs) are essential modulators of signal transduction pathways and has been implicated in many human diseases such as cancer, diabetes, obesity, autoimmune disorders, and neurological diseases, indicating that PTPs are next-generation drug targets. Since PTPN1, PTPN2, and PTPN11 have been reported to be negative regulators of insulin action, the identification of PTP inhibitors may be an effective strategy to develop therapeutic agents for the treatment of type 2 diabetes. In this study, we observed for the first time that nepetin inhibits the catalytic activity of PTPN1, PTPN2, and PTPN11 in vitro, indicating that nepetin acts as a multi-targeting inhibitor of PTPN1, PTPN2, and PTPN11. Furthermore, treatment of mature 3T3-L1 adipocytes with 20 µM nepetin stimulates glucose uptake through AMPK activation. Taken together, our findings provide evidence that nepetin, a multi-targeting inhibitor of PTPN1, PTPN2, and PTPN11, could be a promising therapeutic candidate for the treatment of type 2 diabetes.


Assuntos
Inibidores Enzimáticos/química , Flavonas/química , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Células 3T3-L1 , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Biocatálise , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/patologia , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/uso terapêutico , Flavonas/metabolismo , Flavonas/uso terapêutico , Glucose/metabolismo , Humanos , Resistência à Insulina , Camundongos , Fosforilação/efeitos dos fármacos , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Proteínas Tirosina Fosfatases/metabolismo
10.
Nat Commun ; 12(1): 7133, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880257

RESUMO

Engineered living materials (ELMs) are a fast-growing area of research that combine approaches in synthetic biology and material science. Here, we engineer B. subtilis to become a living component of a silica material composed of self-assembling protein scaffolds for functionalization and cross-linking of cells. B. subtilis is engineered to display SpyTags on polar flagella for cell attachment to SpyCatcher modified secreted scaffolds. We engineer endospore limited B. subtilis cells to become a structural component of the material with spores for long-term storage of genetic programming. Silica biomineralization peptides are screened and scaffolds designed for silica polymerization to fabricate biocomposite materials with enhanced mechanical properties. We show that the resulting ELM can be regenerated from a piece of cell containing silica material and that new functions can be incorporated by co-cultivation of engineered B. subtilis strains. We believe that this work will serve as a framework for the future design of resilient ELMs.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Materiais Biocompatíveis/química , Engenharia Genética/métodos , Biomineralização , Resinas Compostas , Flagelos/genética , Dióxido de Silício , Esporos Bacterianos/genética
11.
Molecules ; 26(6)2021 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33799458

RESUMO

Inhibition of the megakaryocyte protein tyrosine phosphatase 2 (PTP-MEG2, also named PTPN9) activity has been shown to be a potential therapeutic strategy for the treatment of type 2 diabetes. Previously, we reported that PTP-MEG2 knockdown enhances adenosine monophosphate activated protein kinase (AMPK) phosphorylation, suggesting that PTP-MEG2 may be a potential antidiabetic target. In this study, we found that phloridzin, isolated from Ulmus davidiana var. japonica, inhibits the catalytic activity of PTP-MEG2 (half-inhibitory concentration, IC50 = 32 ± 1.06 µM) in vitro, indicating that it could be a potential antidiabetic drug candidate. Importantly, phloridzin stimulated glucose uptake by differentiated 3T3-L1 adipocytes and C2C12 muscle cells compared to that by the control cells. Moreover, phloridzin led to the enhanced phosphorylation of AMPK and Akt relevant to increased insulin sensitivity. Importantly, phloridzin attenuated palmitate-induced insulin resistance in C2C12 muscle cells. We also found that phloridzin did not accelerate adipocyte differentiation, suggesting that phloridzin improves insulin sensitivity without significant lipid accumulation. Taken together, our results demonstrate that phloridzin, an inhibitor of PTP-MEG2, stimulates glucose uptake through the activation of both AMPK and Akt signaling pathways. These results strongly suggest that phloridzin could be used as a potential therapeutic candidate for the treatment of type 2 diabetes.


Assuntos
Resistência à Insulina/fisiologia , Florizina/farmacologia , Proteínas Tirosina Fosfatases não Receptoras/antagonistas & inibidores , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Células 3T3 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Camundongos , Palmitatos/farmacologia , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
12.
J Biotechnol ; 329: 49-55, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33556425

RESUMO

The acetone-butanol-ethanol (ABE) fermentation by solventogenic clostridia has a long history of industrial butanol production. The Clostridium beijerinckii mutant BA101 has been widely studied for ABE fermentation owing to its enhanced butanol production capacity. Here, we characterized the BA101 mutant under controlled environmental conditions in parallel with the parental strain C. beijerinckii NCIMB 8052. To investigate the correlation between phenotype and genotype, we carried out the genome sequencing of BA101. Through comparative genomic analysis, several mutations in the genes encoding transcriptional regulator, sensor kinase, and phosphatase were identified in the BA101 genome as well as other sibling mutants. Among them, the SNP in the Cbei_3078 gene encoding PAS/PAC sensor hybrid histidine kinase was unique to the BA101 strain. The identified mutations relevant to the observed physiological behaviors of BA101 could be potential genetic targets for rational engineering of solventogenic clostridia toward desired phenotypes.


Assuntos
Clostridium beijerinckii , Butanóis , Clostridium beijerinckii/genética , Fermentação , Genômica , Fenótipo , Solventes
13.
Sci Total Environ ; 751: 141599, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32890799

RESUMO

Treatment of industrial and domestic wastewater is very important to protect downstream users from health risks and meet the freshwater demand of the ever-increasing world population. Different types of wastewater (textile, dairy, pharmaceutical, swine, municipal, etc.) vary in composition and require different treatment strategies. Wastewater management and treatment is an expensive process; hence, it is important to integrate relevant technology into this process to make it more feasible and cost-effective. Wastewater treatment using microalgae-based technology could be a global solution for resource recovery from wastewater and to provide affordable feedstock for bioenergy (biodiesel, biohydrogen, bio-alcohol, methane, and bioelectricity) production. Various microalgal cultivation systems (open or closed photobioreactors), turf scrubber, and hybrid systems have been developed. Although many algal biomass harvesting methods (physical, chemical, biological, and electromagnetic) have been reported, it is still an expensive process. In this review article, resource recovery from wastewater using algal cultivation, biomass harvesting, and various technologies applied in converting algal biomass into bioenergy, along with the various challenges that are encountered are discussed in brief.


Assuntos
Microalgas , Animais , Biocombustíveis , Biomassa , Fotobiorreatores , Suínos , Águas Residuárias
14.
J Microbiol Biotechnol ; 31(1): 115-122, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33046680

RESUMO

Phenol-soluble modulins (PSMs) are responsible for regulating biofilm formation, persister cell formation, pmtR expression, host cell lysis, and anti-bacterial effects. To determine the effect of psm deletion on methicillin-resistant Staphylococcus aureus, we investigated psm deletion mutants including Δpsmα, Δpsmß, and Δpsmαß;. These mutants exhibited increased ß-lactam antibiotic resistance to ampicillin and oxacillin that was shown to be caused by increased Nacetylmannosamine kinase (nanK) mRNA expression, which regulates persister cell formation, leading to changes in the pattern of phospholipid fatty acids resulting in increased anteiso-C15:0, and increased membrane hydrophobicity with the deletion of PSMs. When synthetic PSMs were applied to Δpsmα and Δpsmß mutants, treatment of Δpsmα with PSMα1-4 and Δpsmß with PSMß1-2 restored the sensitivity to oxacillin and slightly reduced the biofilm formation. Addition of a single fragment showed that α1, α2, α3, and ß2 had an inhibiting effect on biofilms in Δpsmα; however, ß1 showed an enhancing effect on biofilms in Δpsmß. This study demonstrates a possible reason for the increased antibiotic resistance in psm mutants and the effect of PSMs on biofilm formation.


Assuntos
Toxinas Bacterianas/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/genética , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Genes Bacterianos/genética , Mutação , Infecções Estafilocócicas
15.
J Biotechnol ; 325: 1-6, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33278464

RESUMO

Leuconostoc citreum is a heterofermentative lactic acid bacterium frequently found in the various fermented foods. L. citreum EFEL2700 isolated from Korean kimchi has been used as a host strain for biotechnological applications. For the use as a food-grade host to over-produce food ingredients or enzymes, strong endogenous promoters guarantying high expression levels of target genes are necessary. In this study, transcriptomic analysis of L. citreum EFEL2700 was performed using RNA-Seq and three promoters of the most highly expressed genes were selected: glyceraldehyde 3-phosphate dehydrogenase (G3PD), 6-phosphogluconate dehydrogenase (6PGD), and phosphoketolase (PPK). Thereafter, they were used as promoters to express ß-galactosidase gene from Lactobacillus plantarum WCFS1 in L. citreum EFEL2700 and the levels were compared with the control promoter P710 from L. mesenteroides ATCC 8293. As results, the ß-galactosidase activities of the transformants were 2.73, 0.27, 37.43, and 9.25 units/mg under the P710, G3PD, 6PGD, and PPK promoters, respectively. The expression level of endogenous promoter 6PGD was superior to the heterologous P710 promoter previously used in a Leuconostoc-Escherichia coli shuttle vector. The 6PGD developed in this study can be used as the most suitable promoter for ß-galactosidase expression in L. citreum EFEL2700.


Assuntos
Galactosidases , Lactobacillus plantarum , Perfilação da Expressão Gênica , Lactobacillus plantarum/genética , Leuconostoc/genética
16.
J Microbiol Biotechnol ; 31(2): 250-258, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33148940

RESUMO

Among various species of marine bacteria, those belonging to the genus Halomonas have several promising applications and have been studied well. However, not much information has been available on their antibiotic resistance. In our efforts to learn about the antibiotic resistance of strain Halomonas socia CKY01, which showed production of various hydrolases and growth promotion by osmolytes in previous study, we found that it exhibited resistance to multiple antibiotics including kanamycin, ampicillin, oxacillin, carbenicillin, gentamicin, apramycin, tetracycline, and spectinomycin. However, the H. socia CKY01 resistance pattern to kanamycin, gentamicin, apramycin, tetracycline, and spectinomycin differed in the presence of 10% NaCl and 1% NaCl in the culture medium. To determine the mechanism underlying this NaCl concentration-dependent antibiotic resistance, we compared four aminoglycoside resistance genes under different salt conditions while also performing time-dependent reverse transcription PCR. We found that the aph2 gene encoding aminoglycoside phosphotransferase showed increased expression under the 10% rather than 1% NaCl conditions. When these genes were overexpressed in an Escherichia coli strain, pETDuet-1::aph2 showed a smaller inhibition zone in the presence of kanamycin, gentamicin, and apramycin than the respective control, suggesting aph2 was involved in aminoglycoside resistance. Our results demonstrated a more direct link between NaCl and aminoglycoside resistance exhibited by the H. socia CKY01 strain.


Assuntos
Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Halomonas/efeitos dos fármacos , Cloreto de Sódio/metabolismo , Aminoglicosídeos/análise , Antibacterianos/análise , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana , Regulação Bacteriana da Expressão Gênica , Gentamicinas/farmacologia , Halomonas/genética , Halomonas/metabolismo , Canamicina/farmacologia , Canamicina Quinase/genética , Canamicina Quinase/metabolismo , Nebramicina/análogos & derivados , Nebramicina/farmacologia , Cloreto de Sódio/análise
17.
J Microbiol Biotechnol ; 30(5): 785-792, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32482946

RESUMO

L-Theanine, found in green tea leaves has been shown to positively affect immunity and relaxation in humans. There have been many attempts to produce L-theanine through enzymatic synthesis to overcome the limitations of traditional methods. Among the many genes coding for enzymes in the L-theanine biosynthesis, glutamylmethylamide synthetase (GMAS) exhibits the greatest possibility of producing large amounts of production. Thus, GMAS from Methylovorus mays No. 9 was overexpressed in several strains including vectors with different copy numbers. BW25113(DE3) cells containing the pET24ma::gmas was selected for strains. The optimal temperature, pH, and metal ion concentration were 50°C, 7, and 5 mM MnCl2, respectively. Additionally, ATP was found to be an important factor for producing high concentration of L-theanine so several strains were tested during the reaction for ATP regeneration. Bakers yeast was found to decrease the demand for ATP most effectively. Addition of potassium phosphate source was demonstrated by producing 4-fold higher L-theanine. To enhance the conversion yield, GMAS was additionally overexpressed in the system. A maximum of 198 mM L-theanine was produced with 16.5 mmol/l/h productivity. The whole-cell reaction involving GMAS has greatest potential for scale-up production of L-theanine.


Assuntos
Proteínas de Bactérias/metabolismo , Carbono-Nitrogênio Ligases/metabolismo , Escherichia coli/metabolismo , Glutamatos/metabolismo , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Carbono-Nitrogênio Ligases/genética , Meios de Cultura/química , Meios de Cultura/metabolismo , Escherichia coli/genética , Engenharia Metabólica , Methylophilaceae/enzimologia , Methylophilaceae/genética
18.
Microorganisms ; 8(2)2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32085437

RESUMO

Yeasts are very useful microorganisms that are used in many industrial fermentation processes such as food and alcohol production. Microbial contamination of such processes is inevitable, since most of the fermentation substrates are not sterile. Contamination can cause a reduction of the final product concentration and render industrial yeast strains unable to be reused. Alternative approaches to controlling contamination, including the use of antibiotics, have been developed and proposed as solutions. However, more efficient and industry-friendly approaches are needed for use in industrial applications. This review covers: (i) general information about industrial uses of yeast fermentation, (ii) microbial contamination and its effects on yeast fermentation, and (iii) currently used and suggested approaches/strategies for controlling microbial contamination at the industrial and/or laboratory scale.

19.
Appl Microbiol Biotechnol ; 103(1): 303-313, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30392122

RESUMO

A novel inducible gene expression system using p-isopropyl benzoate (cumate) as an inducer was developed for the industrial production hosts, Bacillus subtilis and Bacillus megaterium. Cumate is non-toxic to the host, inexpensive, and carbon source-independent inducer which provides an economical option for large-scale production of valuable proteins and chemicals from Bacillus strains. The synthetic cumate-inducible system was constructed by combining the strong constitutive Bacillus promoter Pveg with regulatory elements of the Pseudomonas putida, CymR repressor, and its operator sequence CuO. The designed expression cassette containing a sfGFP reporter under the cumate-inducible promoter was assembled into a Bacillus-E. coli shuttle and gene expression investigated in the two Bacillus strains. Characterization of gene expression levels, expression kinetics, and dose-response to cumate inducer concentration confirmed high-level, but tightly controlled GFP reporter expression in tunable, cumate concentration-dependent manner. Unexpectedly, this expression system works equally well for Escherichia coli, resulting in a platform that can be used both in gram-positive and gram-negative expression host. Its tight regulation and controllable expression makes this system useful for metabolic engineering, synthetic biology studies as well industrial protein production.


Assuntos
Bacillus megaterium/genética , Bacillus subtilis/genética , Benzoatos/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Engenharia Genética/métodos , Bacillus megaterium/efeitos dos fármacos , Bacillus subtilis/efeitos dos fármacos , Benzoatos/administração & dosagem , Escherichia coli/genética , Perfilação da Expressão Gênica , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Microrganismos Geneticamente Modificados , Plasmídeos/genética , Regiões Promotoras Genéticas , Pseudomonas putida/genética , Sequências Reguladoras de Ácido Nucleico
20.
Methods Mol Biol ; 1772: 297-325, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29754236

RESUMO

CRISPR-Cas9 has been explored as a transformative genome engineering tool for many eukaryotic organisms. However, its utilization in bacteria remains limited and ineffective. This chapter, taking Clostridium beijerinckii as an example, describes the use of Streptococcus pyogenes CRISPR-Cas9 system guided by the single chimeric guide RNA (gRNA) for diverse genome-editing purposes, including chromosomal gene deletion, integration, single nucleotide modification, as well as "clean" mutant selection. The general principle is to use CRISPR-Cas9 as an efficient selection tool for the edited mutant (whose CRISPR-Cas9 target site has been disrupted through a homologous recombination event and thus can survive selection) against? the wild type background cells. This protocol is broadly applicable to other microorganisms for genome-editing purposes.


Assuntos
Sistemas CRISPR-Cas/genética , Clostridium beijerinckii/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Genoma Bacteriano/genética , Deleção Cromossômica , Recombinação Homóloga/genética , RNA Guia de Cinetoplastídeos/genética , Streptococcus pyogenes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...